How to do load testing

下载 testing data

$ git clone https://github.com/oliver006/elasticsearch-test-data.git

安装依赖

$ sudo apt-get install python-pip python-dev
$ sudo pip install tornado numpy

开始运行

$ cd elasticsearch-test-data
$ python es_test_data.py --es_url=http://192.168.56.100:9200

运行结果

[I 160115 16:52:31 es_test_data:42] Trying to create index http://192.168.56.100:9200/test_data
[I 160115 16:52:31 es_test_data:45] Creating index "test_data" done   {"acknowledged":true}
[I 160115 16:52:31 es_test_data:183] Generating 10000 docs, upload batch size is 1000
[I 160115 16:52:32 es_test_data:62] Upload: OK - upload took:   410ms, total docs uploaded:    1000
[I 160115 16:52:32 es_test_data:62] Upload: OK - upload took:   180ms, total docs uploaded:    2000
[I 160115 16:52:32 es_test_data:62] Upload: OK - upload took:   119ms, total docs uploaded:    3000
[I 160115 16:52:33 es_test_data:62] Upload: OK - upload took:   193ms, total docs uploaded:    4000
[I 160115 16:52:34 es_test_data:62] Upload: OK - upload took:   196ms, total docs uploaded:    5000
[I 160115 16:52:34 es_test_data:62] Upload: OK - upload took:    89ms, total docs uploaded:    6000
[I 160115 16:52:35 es_test_data:62] Upload: OK - upload took:    87ms, total docs uploaded:    7000
[I 160115 16:52:36 es_test_data:62] Upload: OK - upload took:    92ms, total docs uploaded:    8000
[I 160115 16:52:36 es_test_data:62] Upload: OK - upload took:   106ms, total docs uploaded:    9000
[I 160115 16:52:37 es_test_data:62] Upload: OK - upload took:    98ms, total docs uploaded:   10000
[I 160115 16:52:37 es_test_data:214] Done - total docs uploaded: 10000, took 6 seconds
[I 160115 16:52:37 es_test_data:215] Bulk upload average:          157 ms
[I 160115 16:52:37 es_test_data:216] Bulk upload median:           112 ms
[I 160115 16:52:37 es_test_data:217] Bulk upload 95th percentile:  313 ms

方法 1: 使用 curl 进行测试

curl -s -XGET 192.168.56.100:9200/test_data/_search -d '{
  "query": {
    "bool": {
      "must": [],
      "must_not": [],
      "should": [
        {
          "range": {
            "test_type.age": {
              "from": "10000",
              "to": "20000"
            }
          }
        }
      ]
    }
  },
  "from": 0,
  "size": 10,
  "sort": [],
  "facets": {}
}' | grep -Eo "\"took\":[0-9]+"

返回4,说明用了 4ms 进行查询。

"took":4

进行 5 次查询。

  次数   查询时间  
  第一次   4ms  
  第二次   2ms  
  第三次   2ms  
  第四次   3ms  
  第五次   3ms  

再将数据量扩充2000,000

$ python es_test_data.py --es_url=http://192.168.56.100:9200 --count=1000000
[I 160118 16:40:41 es_test_data:42] Trying to create index http://192.168.56.100:9200/test_data
[I 160118 16:40:41 es_test_data:47] Guess the index exists already
[I 160118 16:40:41 es_test_data:183] Generating 1000000 docs, upload batch size is 1000
[I 160118 16:40:41 es_test_data:62] Upload: OK - upload took:    46ms, total docs uploaded:    1000
[I 160118 16:40:41 es_test_data:62] Upload: OK - upload took:    86ms, total docs uploaded:    2000
[I 160118 16:40:41 es_test_data:62] Upload: OK - upload took:    93ms, total docs uploaded:    3000
[I 160118 16:40:41 es_test_data:62] Upload: OK - upload took:    64ms, total docs uploaded:    4000
...
[I 160118 16:45:10 es_test_data:62] Upload: OK - upload took:    42ms, total docs uploaded: 1997000
[I 160118 16:45:10 es_test_data:62] Upload: OK - upload took:    45ms, total docs uploaded: 1998000
[I 160118 16:45:10 es_test_data:62] Upload: OK - upload took:    33ms, total docs uploaded: 1999000
[I 160118 16:45:11 es_test_data:62] Upload: OK - upload took:    36ms, total docs uploaded: 2000000
[I 160118 16:45:11 es_test_data:214] Done - total docs uploaded: 1000000, took 107 seconds
[I 160118 16:45:11 es_test_data:215] Bulk upload average:           45 ms
[I 160118 16:45:11 es_test_data:216] Bulk upload median:            40 ms
[I 160118 16:45:11 es_test_data:217] Bulk upload 95th percentile:   71 ms

然后再使用 curl 测试一下

curl -s -XGET 192.168.56.100:9200/test_data/_search -d '{
  "query": {
    "bool": {
      "must": [],
      "must_not": [],
      "should": [
        {
          "range": {
            "test_type.age": {
              "from": "10000",
              "to": "20000"
            }
          }
        }
      ]
    }
  },
  "from": 0,
  "size": 10,
  "sort": [],
  "facets": {}
}' | grep -Eo "\"took\":[0-9]+"
  次数   查询时间  
  第一次   15ms  
  第二次   11ms  
  第三次   15ms  
  第四次   10ms  
  第五次   11ms  

再增加100,000,000试试看。

$ python es_test_data.py --es_url=http://192.168.56.100:9200 --count=100000000

由于数据量过大,所以中途 Ctrl+C 中断过几次。

方法 2: 使用 jmeter 进行测试

下载 JMeter,http://jmeter.apache.org/

解压到

~/opt/apache-jmeter-2.13

运行

$ chmod +x ~/opt/apache-jmeter-2.13/bin/jmeter.sh
$ ~/opt/apache-jmeter-2.13/bin/jmeter.sh

配置文件

TODO(d3vin.chen): 未完待续。

第二种方法

这是官网提供的数据。

文档参照 https://www.elastic.co/guide/en/kibana/3.0/import-some-data.html

先做这个

curl -XPUT http://192.168.56.100:9200/shakespeare -d '
{
 "mappings" : {
  "_default_" : {
   "properties" : {
    "speaker" : {"type": "string", "index" : "not_analyzed" },
    "play_name" : {"type": "string", "index" : "not_analyzed" },
    "line_id" : { "type" : "integer" },
    "speech_number" : { "type" : "integer" }
   }
  }
 }
}
';

返回

{"acknowledged":true}

下载数据

wget https://www.elastic.co/guide/en/kibana/3.0/snippets/shakespeare.json -O /tmp/shakespeare.json

导入数据

curl -XPUT 192.168.56.100:9200/_bulk –data-binary @/tmp/shakespeare.json

然后测试一下查询速度

curl -s -XGET 192.168.56.100:9200/shakespeare/_search -d '{
  "query": {
    "bool": {
      "should": [
        {
          "query_string": {
            "default_field": "line.text_entry",
            "query": "benches after noon"
          }
        }
      ]
    }
  },
  "from": 0,
  "size": 250
}' | grep -Po "took\":\K[0-9]+"

得到

10

说明是查询时间为 10ms